Binary classification problem, consisting in determmine whether a text or message is sexist or not. It includes any type of sexist expression or related phenomena, like descriptive or reported assertions where the sexist message is a report or a description of a sexist event. In particular, we consider two labels:
- Sexist: the tweet or gab expresses sexist behaviours or discourses.
 - Non-Sexist: the tweet or gab does not express any sexist behaviour or discourse.
 
Publication
              Francisco Rodríguez-Sánchez, Jorge Carrillo-de-Albornoz, Laura Plaza, Adrián Mendieta-Aragón, Guillermo Marco-Remón, Maryna Makeienko, María Plaza, Julio Gonzalo, Damiano Spina, Paolo Rosso (2022) Overview of EXIST 2022: sEXism Identification in Social neTworks. Procesamiento del Lenguaje Natural, Revista nº 69, septiembre de 2022, pp. 229-240.  
          Language
          English
              URL Task
              
          NLP topic
          
      Abstract task
              
          Dataset
          
      Year
              2022
          Publication link
              
          Ranking metric
              Accuracy
          Task results
| System | Accuracy Sort ascending | 
|---|---|
| Mistral-7B-v03 | 0.8226 | 
| Roberta large | 0.8187 | 
| Qwen2.5-7B | 0.8129 | 
| Llama-3.1-8B | 0.8031 | 
| Xlm roberta large | 0.7953 | 
| Roberta base | 0.7875 | 
| Distilbert base uncased | 0.7739 | 
| Xlm roberta base | 0.7661 | 
| Bert base cased | 0.7641 | 
| Bert base multilingual cased | 0.7563 | 
Pagination
- Page 1
 - Next page
 

