EXIST 2022: Sexism categorisation

Multiclass problem that consists in categorize the message according to the type of sexism it encloses.

Publication
Francisco Rodríguez-Sánchez, Jorge Carrillo-de-Albornoz, Laura Plaza, Adrián Mendieta-Aragón, Guillermo Marco-Remón, Maryna Makeienko, María Plaza, Julio Gonzalo, Damiano Spina, Paolo Rosso (2022) Overview of EXIST 2022: sEXism Identification in Social neTworks. Procesamiento del Lenguaje Natural, Revista nº 69, septiembre de 2022, pp. 229-240.
Language
English
NLP topic
Abstract task
Dataset
Year
2022
Ranking metric
F1

Task results

System Precision Recall F1 Sort ascending CEM Accuracy MacroPrecision MacroRecall MacroF1 RMSE MicroPrecision MicroRecall MicroF1 MAE MAP UAS LAS MLAS BLEX Pearson correlation Spearman correlation MeasureC BERTScore EMR Exact Match F0.5 Hierarchical F ICM MeasureC Propensity F Reliability Sensitivity Sentiment Graph F1 WAC b2 erde30 sent weighted f1
Roberta large 0.5846 0.5846 0.5846 0.5846 0.58
Distilbert base uncased 0.5486 0.5486 0.5486 0.5486 0.55
Xlm roberta large 0.5422 0.5422 0.5422 0.5422 0.54
Xlm roberta base 0.5345 0.5345 0.5345 0.5345 0.53
Bert base cased 0.5344 0.5344 0.5344 0.5344 0.53
Ixa ehu ixambert base cased 0.5300 0.5300 0.5300 0.5300 0.53
Roberta base 0.5258 0.5258 0.5258 0.5258 0.53
Bert base multilingual cased 0.5022 0.5022 0.5022 0.5022 0.50
Distilbert base multilingual cased 0.4792 0.4792 0.4792 0.4792 0.48

If you have published a result better than those on the list, send a message to odesia-comunicacion@lsi.uned.es indicating the result and the DOI of the article, along with a copy of it if it is not published openly.