Monolingual document classification task performed on the English dataset of the Multilingual Document Classification Corpus (MLDoc) (Schwenk and Li, 2018), a cross-lingual document classification dataset covering 8 languages. The corpus consists of 14,458 news articles from Reuters classified in four categories: Corporate/Industrial, Economics, Government/Social and Markets. The task consists in classifying each document in one of the four classes.
Publication
Holger Schwenk and Xian Li. 2018. A Corpus for Multilingual Document Classification in Eight Languages. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).
Language
English
NLP topic
Abstract task
Year
2018
Publication link
Ranking metric
F1
Task results
System | Precision | Recall | F1 Sort ascending | CEM | Accuracy | MacroPrecision | MacroRecall | MacroF1 | RMSE | MicroPrecision | MicroRecall | MicroF1 | MAE | MAP | UAS | LAS | MLAS | BLEX | Pearson correlation | Spearman correlation | MeasureC | BERTScore | EMR | Exact Match | F0.5 | Hierarchical F | ICM | MeasureC | Propensity F | Reliability | Sensitivity | Sentiment Graph F1 | WAC | b2 | erde30 | sent | weighted f1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roberta large | 0.9832 | 0.9832 | 0.9832 | 0.9832 | 0.98 | ||||||||||||||||||||||||||||||||
Roberta base | 0.9802 | 0.9802 | 0.9802 | 0.9802 | 0.98 | ||||||||||||||||||||||||||||||||
Xlm roberta large | 0.9789 | 0.9789 | 0.9789 | 0.9789 | 0.98 | ||||||||||||||||||||||||||||||||
Xlm roberta base | 0.9761 | 0.9761 | 0.9761 | 0.9761 | 0.98 | ||||||||||||||||||||||||||||||||
Ixa ehu ixambert base cased | 0.9756 | 0.9756 | 0.9756 | 0.9756 | 0.98 | ||||||||||||||||||||||||||||||||
Bert base cased | 0.9749 | 0.9749 | 0.9749 | 0.9749 | 0.97 | ||||||||||||||||||||||||||||||||
Distilbert base uncased | 0.9726 | 0.9726 | 0.9726 | 0.9726 | 0.97 | ||||||||||||||||||||||||||||||||
Bert base multilingual cased | 0.9716 | 0.9716 | 0.9716 | 0.9716 | 0.97 | ||||||||||||||||||||||||||||||||
Distilbert base multilingual cased | 0.9693 | 0.9693 | 0.9693 | 0.9693 | 0.97 |