The task aims at finding the best techniques to identify propagandistic tweets from governmental and diplomatic sources on a dataset of tweets in English, posted by authorities of China, Russia, United States and the European Union. It consists on determining whether a tweet has propaganda techniques or not.
Publication
Pablo Moral, Guillermo Marco, Julio Gonzalo, Jorge Carrillo-de-Albornoz, Iván Gonzalo-Verdugo (2023) Overview of DIPROMATS 2023: automatic detection and characterization of propaganda techniques in messages from diplomats and authorities of world powers. Procesamiento del Lenguaje Natural, Revista nº 71, septiembre de 2023, pp. 397-407.
Language
English
NLP topic
Abstract task
Dataset
Year
2023
Publication link
Ranking metric
ICM
Task results
System | Precision | Recall | F1 Sort ascending | CEM | Accuracy | MacroPrecision | MacroRecall | MacroF1 | RMSE | MicroPrecision | MicroRecall | MicroF1 | MAE | MAP | UAS | LAS | MLAS | BLEX | Pearson correlation | Spearman correlation | MeasureC | BERTScore | EMR | Exact Match | F0.5 | Hierarchical F | ICM | MeasureC | Propensity F | Reliability | Sensitivity | Sentiment Graph F1 | WAC | b2 | erde30 | sent | weighted f1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roberta large | 0.7984 | 0.7984 | 0.7984 | 0.7984 | 0.80 | ||||||||||||||||||||||||||||||||
Xlm roberta large | 0.7931 | 0.7931 | 0.7931 | 0.7931 | 0.79 | ||||||||||||||||||||||||||||||||
Roberta base | 0.7799 | 0.7799 | 0.7799 | 0.7799 | 0.78 | ||||||||||||||||||||||||||||||||
Ixa ehu ixambert base cased | 0.7796 | 0.7796 | 0.7796 | 0.7796 | 0.78 | ||||||||||||||||||||||||||||||||
Xlm roberta base | 0.7791 | 0.7791 | 0.7791 | 0.7791 | 0.78 | ||||||||||||||||||||||||||||||||
Bert base cased | 0.7763 | 0.7763 | 0.7763 | 0.7763 | 0.78 | ||||||||||||||||||||||||||||||||
Bert base multilingual cased | 0.7709 | 0.7709 | 0.7709 | 0.7709 | 0.77 | ||||||||||||||||||||||||||||||||
Distilbert base uncased | 0.7687 | 0.7687 | 0.7687 | 0.7687 | 0.77 | ||||||||||||||||||||||||||||||||
Distilbert base multilingual cased | 0.7471 | 0.7471 | 0.7471 | 0.7471 | 0.75 |