EXIST 2022: Sexism categorisation

This is a multi-class classification tasks. The systems have to decide whether or not a given tweet contains sexist expressions or behaviours (i.e., it is sexist itself, describes a sexist situation or criticizes a sexist behaviour) and, if so, to categorize the message according to the type of sexism (according to the categorization proposed by experts and that takes into account the different facets of women that are undermined): (i) ideological and inequality, (ii) stereotyping and dominance, (iii) objectification, (iv) sexual violence, and (v) misogyny and non-sexual violence.

Publication
Francisco Rodríguez-Sánchez, Jorge Carrillo-de-Albornoz, Laura Plaza, Adrián Mendieta-Aragón, Guillermo Marco-Remón, Maryna Makeienko, María Plaza, Julio Gonzalo, Damiano Spina, Paolo Rosso (2022) Overview of EXIST 2022: sEXism Identification in Social neTworks. Procesamiento del Lenguaje Natural, Revista nº 69, septiembre de 2022, pp. 229-240.
Language
Spanish
NLP topic
Abstract task
Dataset
Year
2022
Ranking metric
Macro F1

Task results

System Precision Recall F1 Sort ascending CEM Accuracy MacroPrecision MacroRecall MacroF1 RMSE MicroPrecision MicroRecall MicroF1 MAE MAP UAS LAS MLAS BLEX Pearson correlation Spearman correlation MeasureC BERTScore EMR Exact Match F0.5 Hierarchical F ICM MeasureC Propensity F Reliability Sensitivity Sentiment Graph F1 WAC b2 erde30 sent weighted f1
Hermes-3-Llama-3.1-8B_2 0.5736 0.5736 0.5736 0.5736 0.57
Hermes-3-Llama-3.1-8B 0.5736 0.5736 0.5736 0.5736 0.57
PlanTL GOB ES roberta large bne 0.5668 0.5668 0.5668 0.5668 0.57
Xlm roberta large 0.5593 0.5593 0.5593 0.5593 0.56
PlanTL GOB ES roberta base bne 0.5554 0.5554 0.5554 0.5554 0.56
XLM-RoBERTa-large 0.5540 0.5540 0.5540 0.5540 0.55
XLM-RoBERTa-large-2 0.5540 0.5540 0.5540 0.5540 0.55
XLM-RoBERTa-large-v3 0.5540 0.5540 0.5540 0.5540 0.55
Dccuchile bert base spanish wwm cased 0.5370 0.5370 0.5370 0.5370 0.54
Gemma-2B-IT 0.5262 0.5262 0.5262 0.5262 0.53

If you have published a result better than those on the list, send a message to odesia-comunicacion@lsi.uned.es indicating the result and the DOI of the article, along with a copy of it if it is not published openly.