Multiclass problem that consists in categorize the message according to the type of sexism it encloses.
Publication
Francisco Rodríguez-Sánchez, Jorge Carrillo-de-Albornoz, Laura Plaza, Adrián Mendieta-Aragón, Guillermo Marco-Remón, Maryna Makeienko, María Plaza, Julio Gonzalo, Damiano Spina, Paolo Rosso (2022) Overview of EXIST 2022: sEXism Identification in Social neTworks. Procesamiento del Lenguaje Natural, Revista nº 69, septiembre de 2022, pp. 229-240.
Language
English
URL Task
NLP topic
Abstract task
Dataset
Year
2022
Publication link
Ranking metric
F1
Task results
System | F1 Sort ascending | Accuracy | MacroF1 | Pearson correlation | ICM |
---|---|---|---|---|---|
Roberta large | 0.5846 | 0.5846 | 0.5846 | 0.5846 | 0.58 |
Distilbert base uncased | 0.5486 | 0.5486 | 0.5486 | 0.5486 | 0.55 |
Xlm roberta large | 0.5422 | 0.5422 | 0.5422 | 0.5422 | 0.54 |
Xlm roberta base | 0.5345 | 0.5345 | 0.5345 | 0.5345 | 0.53 |
Bert base cased | 0.5344 | 0.5344 | 0.5344 | 0.5344 | 0.53 |
Ixa ehu ixambert base cased | 0.5300 | 0.5300 | 0.5300 | 0.5300 | 0.53 |
Roberta base | 0.5258 | 0.5258 | 0.5258 | 0.5258 | 0.53 |
Bert base multilingual cased | 0.5022 | 0.5022 | 0.5022 | 0.5022 | 0.50 |
Distilbert base multilingual cased | 0.4792 | 0.4792 | 0.4792 | 0.4792 | 0.48 |