DIANN 2023: Disability detection

La tarea consiste en reconocer menciones de discapacidades en resúmenes de artículos  biomédicos en inglés. La tarea sigue las pautas establecidas en la competición de IberLEF 2018 “Disability annotation on documents from the biomedical domain (DIANN)”.

Publicación
Hermenegildo Fabregat, Juan Martínez-Romo, and Lourdes Araujo. 2018b. Overview of the DIANN task: Disability annotation task. In Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018) co-located with 34th Conference of the Spanish Society for Natural Language Processing (SEPLN 2018), Sevilla, Spain, September 18th, 2018, volume 2150 of CEUR Workshop Proceedings, pages 1–14. CEUR-WS.org.
Idioma
Inglés
Tarea abstracta
Dataset
Año
2023
Métrica Ranking
F1

Mejores resultados para la tarea

Sistema Precisión Recall F1 Ordenar ascendente CEM Accuracy MacroPrecision MacroRecall MacroF1 RMSE MicroPrecision MicroRecall MicroF1 MAE MAP UAS LAS MLAS BLEX Pearson correlation Spearman correlation MeasureC BERTScore EMR Exact Match F0.5 Hierarchical F ICM MeasureC Propensity F Reliability Sensitivity Sentiment Graph F1 WAC b2 erde30 sent weighted f1
Roberta large 0.7982 0.7982 0.7982 0.7982 0.80
Xlm roberta large 0.7740 0.7740 0.7740 0.7740 0.77
Ixa ehu ixambert base cased 0.7695 0.7450 0.7450 0.7695 0.75
Roberta base 0.7612 0.7612 0.7612 0.7612 0.76
Xlm roberta base 0.7438 0.7438 0.7438 0.7438 0.74
Bert base multilingual cased 0.7384 0.7384 0.7384 0.7384 0.74
Bert base cased 0.7364 0.7364 0.7364 0.7364 0.74
Distilbert base uncased 0.6966 0.6966 0.6966 0.6966 0.70
Distilbert base multilingual cased 0.6950 0.6950 0.6950 0.6950 0.69