Multilingual Complex Named Entity Recognition 2022

La tarea consiste en detectar y etiquetar entidades semánticamente ambiguas y complejas en contextos breves y poco contextualizados. Las entidades complejas, como los títulos de obras creativas (nombres de películas/libros/canciones/software) no son sustantivos simples y son más difíciles de reconocer. Pueden adoptar la forma de cualquier constituyente lingüístico, como una cláusula imperativa ("Dial M for Murder"), y no se parecen a las entidades tradicionales (nombres de personas, lugares, organizaciones).

La tarea se realiza sobre el conjunto de datos MULTICONER (Malmasi et al., 2022). MULTICONER proporciona datos de tres dominios (frases de Wikipedia, preguntas y consultas de búsqueda) en 11 idiomas diferentes, que se utilizan para definir 11 subconjuntos monolingües. Además, el conjunto de datos tiene subconjuntos multilingües y de código mixto.

Se etiquetan las siguientes entidades: nombres de personas, ubicación o instalaciones físicas, corporaciones y empresas, todos los demás grupos, productos de consumo, y títulos de obras creativas, como títulos de películas, canciones y libros.

Publicación
Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta Kar, and Oleg Rokhlenko. 2022. SemEval-2022 Task 11: Multilingual Complex Named Entity Recognition (MultiCoNER). In Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1412–1437, Seattle, United States. Association for Computational Linguistics.
Idioma
Inglés
Tarea abstracta
Año
2022
Métrica Ranking
F1

Mejores resultados para la tarea

Sistema Precisión Recall F1 Ordenar ascendente CEM Accuracy MacroPrecision MacroRecall MacroF1 RMSE MicroPrecision MicroRecall MicroF1 MAE MAP UAS LAS MLAS BLEX Pearson correlation Spearman correlation MeasureC BERTScore EMR Exact Match F0.5 Hierarchical F ICM MeasureC Propensity F Reliability Sensitivity Sentiment Graph F1 WAC b2 erde30 sent weighted f1
Roberta large 0.7012 0.7012 0.7012 0.7012 0.70
Xlm roberta large 0.7007 0.7007 0.7007 0.7007 0.70
Roberta base 0.6577 0.6577 0.6577 0.6577 0.66
Distilbert base uncased 0.6563 0.6563 0.6563 0.6563 0.66
Bert base multilingual cased 0.6252 0.6252 0.6252 0.6252 0.63
Xlm roberta base 0.6080 0.6080 0.6080 0.6080 0.61
Ixa ehu ixambert base cased 0.6075 0.6075 0.6075 0.6075 0.61
Bert base cased 0.5993 0.5993 0.5993 0.5993 0.60
Distilbert base multilingual cased 0.5693 0.5693 0.5693 0.5693 0.57